Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study.
نویسندگان
چکیده
The effect of hydraulic retention time (HRT) and seasonality on the removal efficiency of 26 organic microcontaminants from urban wastewater was studied in two pilot high-rate algal ponds (HRAPs). The targeted compounds included pharmaceuticals and personal care products, fire retardants, surfactants, anticorrosive agents, pesticides and plasticizers, among others. The pilot plant, which was fed at a surface loading rate of 7-29 g of COD m(-2)d(-1), consisted of a homogenisation tank and two parallel lines, each one with a primary settler and an HRAP with a surface area of 1.5 m(2) and a volume of 0.5 m(3). The two HRAPs were operated with different HRTs (4 and 8 d). The removal efficiency ranged from negligible removal to more than 90% depending on the compound. Microcontaminant removal efficiencies were enhanced during the warm season, while the HRT effect on microcontaminant removal was only noticeable in the cold season. Our results suggest that biodegradation and photodegradation are the most important removal pathways, whereas volatilization and sorption were solely achieved for hydrophobic compounds (log Kow>4) with a moderately high Henry's law constant values (11-12 Pa m(-3)mol(-1)) such as musk fragrances. Whereas acetaminophen, ibuprofen and oxybenzone presented ecotoxicological hazard quotients (HQs) higher than 1 in the influent wastewater samples, the HQs for the effluent water samples were always below 1.
منابع مشابه
Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation
Given that sustainable energy production and advanced wastewater treatment for producing clean water are two major challenges faced by modern society, microalgae make a desirable treatment alternative by providing a renewable biomass feedstock for biofuel production, while treating wastewater as a growth medium. Microalgae have been known to be resilient to the toxic contaminants of highly conc...
متن کاملAlgal treatment of a mixture of urban wastewater and Vinasse using Spirulina platensis microalgae
Background and Objective: Algal wastewater treatment is a new and economic technology to remove and recycle nutrients from wastewater. In order to investigate the effect of vinasse on microalgae growth and also the effect of its growth on nitrogen and phosphate removal in a mixture of urban wastewater and vinasse, the growth of Spirulina platensis was studied. Materials and Methods: Growth abi...
متن کاملWaste Water Treatment Using Micro-Algae - A review Paper
The present study illustrates the efficiency of microalgae based treatment system. Treatment of wastewater with Microalgae based system have the ability to remove nutrients (Nitrogen, Phosphorus and other nutrients), heavy metals, toxic substances (both organic and inorganic), BOD, COD and other impurities present in the wastewater by using the sunlight, CO2, and impurities like nutrients prese...
متن کاملOzonation Provides Successful Removal of Micropollutants and Endocrine Disruptors
Conventional water and wastewater treatment processes have proven to be ineffective at removing micropollutants in aquatic environments. A collective term used to describe organic compounds or heavy metals at low concentrations, micropollutants or emerging contaminants, put the environment in jeopardy by contaminating surface and ground waters. However, new technologies are being studied and de...
متن کاملRemoval of Pharmaceutical Products in a Constructed Wetland
Background: There is growing interest in the natural and constructed wetlands for wastewater treatment. While nutrient removal in wetlands has been extensively investigated, information regarding the degradation of the pharmaceuticals and personal care products (PPCPs) has only recently been emerging. PPCPs are widely distributed in urban wastewaters and can be removed to some extent by the con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 288 شماره
صفحات -
تاریخ انتشار 2015